If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-2540=0
a = 5; b = 0; c = -2540;
Δ = b2-4ac
Δ = 02-4·5·(-2540)
Δ = 50800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{50800}=\sqrt{400*127}=\sqrt{400}*\sqrt{127}=20\sqrt{127}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{127}}{2*5}=\frac{0-20\sqrt{127}}{10} =-\frac{20\sqrt{127}}{10} =-2\sqrt{127} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{127}}{2*5}=\frac{0+20\sqrt{127}}{10} =\frac{20\sqrt{127}}{10} =2\sqrt{127} $
| 1+y=1.41y | | 5n+3=7(n+1)-3n | | 1+x=1.41xX | | 12=12x+12 | | (x-10+2x)+x=425 | | 44=442+22h | | -1+2x+3x=x–4+7x | | 37+8x=33.50 | | 5+7x=0 | | 243/3*10-x=750 | | -3(2x+5)=6x+33 | | 6b+9=4b-9 | | -5(4t-3)+6t=3t-8 | | 480/5-43+x=1436 | | -11-17n=329 | | 9a+21=() | | 3x^2-10x-14=0 | | 16−3p=2/3p+5 | | 6(3w+5)/4=10 | | x+1/2x+30=90 | | 3^2-10x-14=0 | | 2(x+12)=4x+6 | | 2x+3(4x-7)=4x-21 | | Y=3x+2x=-3 | | 4(d+2)-2d=3(4+d) | | 3/7x+5/8x+729=x | | 4z-25=3 | | -3s–6=-12 | | (q-3)*2=24 | | -19x-1-(-12x+34)=0 | | 7(s+3)=84 | | 9u+63=63 |